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Abstract. We consider the Heun equations in the context of the quasiexactly-solvable spectral 
problems and establish the conditions for this class ofequations to admit algebraic solutions. The 
Schr6dinger operators that can be associated with Hem equations are conshucted explicitly; in 
some cases, we present their supeeymmevic parmee. We study a Hem-like system of equations 
which is relevant for the classical solution of the two-dimensional Abelian-Higgs model. 

1. Introduction 

In quantum mechanics, there are a few physically meaningful Schradinger equations (e.g. the 
harmonic oscillator or the Coulomb problem) whose entire spectra are explicitely calculable. 
Extracting a suitable prefactor from the wavefunction and using an appropriate variable, the 
spectral problem can be reduced to a differential equation whose relevant solutions are 
polynomials. We will refer to these examples as exactly solvable (ES) equations. 

Besides these equations, there are simple potentials (e.g. the celebrated quartic potential) 
for which no one eigenstate can be expressed in terms of elementary functions. 

A few years ago, a new class of eigenvalue equations was inlYoduced which occupy 
an intermediate position between the two extreme cases mentioned above [l-31. They are 
the quasi-exactly-solvable (QES) equations. For these equations, a part of the spectrum 
(generally a finite number of eigenstates) can be computed by algebraic methods. As 
for ES equations, a suitable change of function and of variable allows one to express the 
operator defining the QES equation in a form that leaves the space of polynomials of fixed 
degree, say n, invariant. Accordingly, n + 1 eigenstates can be found by solving the 
eigenvalue problem for an (n + 1) x (n + 1) numerical matrix. This is why one calls the 
corresponding eigenvectors and eigenvalues ‘algebraically computable’ or, for shortness, 
‘algebraic’. Unlike ES equations, the algebraic solutions of QES equations exist for specific 
values (depending on n) of the coupling constant. 

The ES equations are typically related to hypergeometric equations which have three 
regular singularities. For many QES spectral problems, the relevant differential equation 
has four regular singularities; accordingly, they belong to the class of Heun equations. 
Therefore, it is worth studying the relationship between the Heun and QES equations; this 
is the aim of the present paper. 

We present a general description of Heun equations in section 2 and, in section 3, 
we analyse the conditions for such equations to be QES. In section 4, we discuss a 
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meaningful spectral problem which, like Heun equations, admits a rich set of algebraic 
solutions. Finally, section 5 approaches the relationship between QES Heun equations and 
supersymewic quantum mechanics. 

2. Heun equation 

In this section, we present several formulations of the Heun equation. 

2.1. General defutition 

The Hem equation [4] can be defined by means of the following Fuchs operator: 

dZ G dG 
4t(l - t ) ( I  -kzt)- + 2 ( ( c ~ -  I )k ’ t ( l  - t )+@- l ) f ( l  - k Z t ) + ( y + l ) ( l  -?)(I - k ’ f ) ) -  

dr2 dt 
(1) 

wherea. @, y? A ,  6 and kZ are constants. It has four regular singularities (canonically chosen 
at t = 0, kZ ,  1, m); in this respect, it differs from the hypergeomebic equation which has 
three regular singularities. Using the new variable and function 

(2) 

+ ( A  - 6kZt)G = 0 0 < k2 < 1 

Z t = sn ( x .  k )  F(x )  = G(r) 

equation ( I )  can be set in the form 

H(a. B, Y ,  6 ) F ( x )  = - W x )  

with 

(3) 

Here, sn, cn, dn represent the Jacobi elliptic functions sn(x, k), cn(x, k), dn(x, k )  ofmodulus 
k;  sn(x, k )  and cn(x, k) are periodic with period 4K(k), while dn(x, k )  has a period 2K(k) ;  
K ( k )  is the complete elliptic function of the first kind. 

2.2. Schrodinger form 
Changing F ( x )  in equation (3) into a new function + ( x ) ,  such that 

Q ( x )  = dsnycn-Bdn*F(x) (5) 

one obtains a Schriidinger equation for @(x) 

with 

A = 6+ (a + B  - Y - 1)’ - 1 (8) 

h A - :((a Jr 1)’ - (B + y)’ - 1) - $k’((,¶ + 1)’ - (a + y)’ - 1). (9) 

The potential V ( x )  is periodic with period 2 K ( k )  and, in general, singular (only the function 
dn is free of zeros on the real axis). 
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2.3. Trigonometric form 

Shifting the variable x in equation (3) by one quarter of the period and changing to a new 
function and variable by means of 

p(x - K ( k ) )  = dn2‘ O($) sin($) = sn(x) (10) 

( q  is defined below in equation (13)) enables one to express equations (3) and (4) in a form 
that depends only on the usual trigonometric functions 

A@($) =ha($) (11) 

with 

cos$ d$ 
cos $ 
sin $ 

2 . 2  r? = (1 - k sin k z ( a  - 41 + 1) sin$cos$ + B- + y(1 - kz) -  - 

+k2(4q2-2q-2qor)sin2$ s in$=snx.  (12) 

This form of Heun equation was used in relation with spin systems [7]. 

3. Quasi-exactly-solvable Hem equations 

3.1. General case 

In order to discuss the Heun equations in the framework of the QES equations [l-31, it is 
convenient to define the parameter 7 as follows 

6 = 2 t m +  1) + 2q(y -or - p).  (13) 

If q is an integer, say = n, then one can show easily that the Fuchs operator in equation (1) 
preserves Pn, the space of polynomials of degree n in the variable t .  Therefore, the form (13) 
of 6 with q = n guarantees the existence of n + 1 polynomial solutions G(t), corresponding 
to n + 1 particular values of parameter h. If, on the other hand, 

is also a positive integer, then operator (1) preserves both P, and P, [ 5 ] .  In these cases, 
polynomial solutions of degrees m and n exist. 

Using equation (Z), one can associate, to any polynomial solution of equation (I), an 
‘algebraic’ eigenvector to the spectral problem (3). The eigenvalue equation is considered 
with a periodic boundary condition, where h is the spectral parameter. The eigenvectors 
produced in this way have a period 2K(k) .  

The corresponding solutions to equation (6) can also be obtained; due to the square-root 
factor in equation (5), these solutions do not, in general, fulfil the physical requirements 
imposed on wavefunctions. 

One may ask the following question concerning equation (3): ‘given a. ,9, y ,  which 
values of S allow algebraic eigenvectors to exist?’ For generic values of a, B. y .  the 
possible values of 8 assemble into eight families, each indexed by an integer. One obtains 
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this result once the following property of operator (3) is observed [6]. Let a ,  b, c be three 
real numbers such that 

(15) a(a - I -a) = b(b -  1-8) = c ( c -  1 + y )  =O. 

Then, we have the following identity for the operators (4): 

2 
sn-ecn-bdn-"H(or,j3,y,q)snCcnbdn" = H or-2a,j3-2b, y + 2 c , q -  

+c( l  - j 3 )  + b ( l +  y )  +2bc+kz(a(l  + y )  +c( l  -c i )+2ac) .  (16) 
One can therefore conshuct algebraic solutions of the form 

a + b + c  
2 f'n €Pn (17) F(x) = snCcnbdn4 Pn(sn2) n = q - 

if a ,  b,  c obey equation (15) and n is a positive integer. One then finds easily the eight 
families of values of 6: 

(Q ) 

(b)  

(4 
(4 
(e )  

(f 1 
(g) 

(h) 

6 = 2n(2n + 1 + y -a - p )  
6 = (2n+ 1 - y) (2n+2 -or - j3) 
6 = (2n+ 1 +j3)(2n+2+y -a) 

6 = (2n + 1 +or)(2n +2+  y - j3) 
6 = (2n +2+a +@)(Zn +3+ y )  

6 = (2n +2  - y +p)(Zn + 3  -a) 

6 = (2n+2 - y +a)(2n+3 - j3) 

6 = (2n+4)(2n + 3  - y + a  + p )  

if a = 0, b = 0, c = 0 

if a =O, b = 0, c = 1 - y 

if a =O. b= 1 + p ,  c = 0 

if a = 1 +a, b = 0. c = O  
if a = 1 +or, b = 1 +@, c = 0 

if a =O, b = I +p.  c = 1 - y 

if a = 1 +or, b = 0, c = 1 - y 

if a = 1 +a, b= 1 +j3, c = 1 - y 

(18) 

3.2. Multiple algebraization 

For some values of or, j3, y ,  two or more of the families (18) are identical. The associated 
Heun equation then possesses several types of algebraic solutions; we will say that it has a 
multiple algebraization. The Lam6 equation [8] 

provides a typical example of such a situation. It corresponds to a = j3 = y = 0 in 
equation (3). A total number of 2N + 1 algebraic solutions exist; they are known as Lam6 
polynomials. They are of the types (a).  (e) ,  (f), (g) (respectively, of types (b), (c), (d), 
(h ) )  if N is even (respectively, odd) [9].  The same pattern of the algebraic solutions occurs, 
in fact, as long as or, j3. y are even integers. 

As another example, let or = f ,  p = y = 0. The families ( a )  and (f) of equation (18) 
in equation (14) coincide, so that algebraic solutions of the corresponding types coexist. 
The same statement holds true for families (b) and (c). (d)  and (h) and. finally, for (e) and 
(g). 

For odd values of or and (or) j3 and (or) y .  the degeneracies in a and (or) b and (or) 
c predicted by equation (15) are only apparent. Indeed, the corresponding factor@) in 
equation (7) is (are) polynomial(s) in f and, accordingly, is (are) absorbed into P,. 
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3.3. The case j3 = y = 0 

Let us now concentrate on the case f i  = y = 0. Operator (3) is thcn regular everywhere. 
Moreover, the limit k = 0 corresponds to the free Schrodinger equation on the circle 
( K ( 0 )  = x/Z) .  The corresponding spectrum is well known: A = 0.1,1,4,4.. . . j z .  j 2 . .  . . . 
Using obvious notation, we label the k # 0 eigenvalues emerging from these values at k = 0 
according to SO, S I ,  A I ,  S4,  A4, . . . . The explicit solutions corresponding to n = 0 and n = 1 
in equation (18) are given in appendix A. 

In the case of Lam6 equation (19), the 2N + 1 Lam6 polynomials can be recovered 
from appendix A (setting LI = 0) for N = 0, 1,2,3. Inspection of the limit k = 0 suggests 
that the Lam6 polynomials occupy the 2N + 1 lowest energy levels. 

For (Y = 2, the possible values of 6 are also of the form 6 = N ( N +  1 )  (N integer). The 
algebraic solutions corresponding to the lowest values of N occupy the following levels: 

where we have labelled the eigenstates according to their value in the k = 0 limit (the labels 
in parentheses a,, b,, . . . , with n = 0 or 1 refer to appendix A). Similarly, for LI = 4, one 
finds 

These cases show explicitly that, in general, non-algebraic eigenstates occur between the 
algebraic eigenstates (in conhast to the Lam6 equation). For the higher values of 6 ,  the set 
of the algebraic solutions involve higher values of n than those given in the appendix. 

For j3 = y = 0, the potential (7) is regular and bounded. The eigenstates of equation (6) 
are given by 

h = h - $(CY’ + Zci - kZa2). 
F *=- 

dnUl2 

3.4. More solutionsfrom the trigonometric form 

Expanding the eigenfunctions of operator 6 (see equation (12)) according to 

2 a(@) = fo(z)Eo + f i (z)Et  + fz(z)Ez + f3(z)E3 z sin @ (27) 

E o = 1  E l = c o s +  E2=sin+ E3=cos+sin@ (28) 

enables one to transform equation (1 1) into four decoupled equations (one for each function 
fa, U = 0. 1,2,3). All algebraic solutions mentioned above can be recovered in this way. 

One may wonder, however, whether alternative ansatzes to equation (27) can be used 
for a(@) which lead to different types of algebraic solutions. In particular, it would be 
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interesting to obtain, in this way, the doubly-periodic solutions of the Lam6 equation [SI. 
One possibility consists in choosing O(@) of the form 

sin@ z =sin 2 @. (29) 

it allows one to transform equation (11) into a system of two coupled equations for 
hl(z), hz(z). The new equations have polynomial coefficients of z, provided ,3 = 0. If, in 
addition, 01 = 0, then the resulting 2 x 2 matrix operator preserves the following spaces: 

P ( P , P )  if I ) = P + -  -' p integer (30) 

W ~ ~ p - 1 )  if I ) = P + -  - y p integer. (31) 

4 

4 

Here, P(m, n) denotes the vector space of doublets of polynomials of degrees m and n. In 
this way, algebraic solutions are obtained which are doubly periodic, i.e. with period 4n. 
To each of these, one can associate another algebraic solution (with the same eigenvalue) by 
shifting the variable @ by a quarter of a period (i.e. by x ) .  This is equivalent to replacing 
(20) by 

sin@. (32) 

The values of 6 associated vdh these solutions differ from those of the form (18); ansatze 
(29), (32) really lead to different algebraic solutions. 

We have failed to obtain solutions of this type for general values of 01, ,3, y .  Doubly 
periodic solutions were also obtained for 01 = y = 0; the counterpart of ansatz (29) then 
reads 

H = hl(Z) (cos ,>I+, + h2(Z) (cos ;y+P cos@. 

(33) 

(34) 

4. The Hcun equation and sphaleron stability 

There are several examples of fields theories (especially in 1 + 1 dimensions, e.g. [IO- 
121) which possess non-trivial classical solutions; the best known of these solutions are the 
solitons and sphalerons [13]. They correspond, respectively, to local minima and unstable 
extrema of the classical energy. In a few cases, the classical solution can be computed 
in a closed form and the stability analysis can be formulated in terms of a Heun equation 
[IO, 14-16]. 

The Abelian-Higgs model in 1 + 1 dimensions admits a sphaleron solution 1171. The 
stability of the solution can be canied out by studying the fluctuations about the sphaleron. 
With a suitable parametrization of the fluctuations, the normal-mode equation reads [18,191 

= A  dz 02k2 sn2 28k cn dn 
- (i) + (28kcndn (2+82)k2sn2-1 - k2) ( 8 )  ( 8 )  (35) 
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where 8’ represents the mass ratio of the Higgs boson to the gauge boson. If 02 = N(N+l), 
where N is an integer, then 4N + 2 solutions of system (35) can be obtained by solving 
algebraic equations [19,20]. For instance, in the cases N = 1 and N = 2, the state of the 
lowest eigenvalue reads, respectively, 

f =&kcndn g=2k2sn2-h h=- (1+k2)  (36) 

f = &k cn(6k2 sn2 +A - 3) 

A=l-2-. 

g = - dn( 18k2 sn2 +A - 3 - 12’) 
(37) 

The eigenvalue h is a negative function of k. Accordingly, the eigenmode above represents 
the direction of instability of the sphaleron. 

The Occurence of a finite number of algebraic solutions to equation (35) suggests that it 
might be related to the Heun equations. One can further pursue the analogy by expressing 
spectral problem (35) in terms of new functions, say F(x), W(x), defined by [24] 

(38) 
d f  
dx F(x) = f ( x )  W ( x )  = - - Bksn(x, k)g(x). 

With this reparametrization, equation (35) becomes 

d2 
--W + (h - 02k2~n2)W = 0 
dx2 

-2 cn dn 
W. -F - -- + ( h - 0  k s n ) F = -  

dx2 sn dx sn 
d2 2cndndF 2 2  2 

(39) 

(40) 

Equation (39) decouples and is nothing but the Lam6 equation. The differential operator on 
the left-hand side of equation (40) is of the form (4) with a = p = 0, y = -2. As shown in 
the previous section, this operator admits 2N + 1 algebraic eigenvectors. Therefore 2N + 1 
solutions of equation (35), that is to say half of the algebraic normal modes (in particular, 
the negative mode (36),(37)), correspond to W = 0 and are determined by a Heun equation. 
The other algebraic solutions correspond to the 2N + 1 Lam6 polynomials of equation (39). 

For the first few values of N, the algebraic solutions of equation (40) (with W = 0) 
read: 

N = l  FO = cndn Ao=-(1+k2) 

Fl,2=ksn2*1 h1,2=&2k 

N = 2  F0.3 = cn(6k2 sn2 +ha3 - 3) A0.3 = 1 2J1+3kz 

F1.z = dn(6k2snz+hl,2 - 3k2) AI = k2 Z k m  (42) 

F 4  = sn’ A4 = 3(1 + k2). 

This example suggests that QES operators can be interesting on their own, even though 
the associated Schrijdinger equation is not. The Schrdinger equation associated with 
equation (40) (with W = 0), through equation (4), reads: 

The potential here is singular and so are the algebraic eigenfunctions. 
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5. Supersymmetry 

Starting from a Schrodinger operator, say H-, shifted in such a upay that the energy of the 
ground state, say $0, vanishes, the following relations hold: 

dZ dW H-- (L -+U' ) (-2 + w) = -z+x + w2 

It is well known [21] that the spectrum of the operator 

+ w 2  

is related to the spectrum of H-. Indeed, if H-$ = h$, then 

Hence, the spectrum of H+ is the same as the spectrum of H-, apart from the state of 
lowest energy which is annihilated by the operator ((-dz + W)$o = 0). However, since 
we have 

(48) 

it appears that if, by chance, @;' is a normalizable function (as may be the case for periodic 
potentials), then the two Hamiltonians H+ and H- possess exactly the same spectrum. The 
construction of supersymmetric partners of physically relevant Lam6 equations is discussed 
in [15]. The constuction of supersymmetric partners of QES operators was investigated in 
[22,23]; here we want to discuss it more specifically for Heun equations. Obviously, the 
branches labelled (a )  and (d) in appendix A correspond to ground states (the eigenvalue is 
zero for k2 = 0). For n = 0, the superpotentials associated with branches ( a )  and (d) read, 
respectively. 

- I  - 0  H+(@o 1- 

(Y sncn 2a + 2sncn  W = k2-- W = - k  -- 
2 dn 2 dn (49) 

and lead, for H+, to potentials of the form (7). The superpotentials associated with branches 
(a)  and (d) for n = I ,  read, respectively, 

4 - 2k2(a/A) + k 2 ( a  - 4) sn2 
2 dn sn2 -(2/A) 

A = 2 + (2 - a)kZ - Jk4(0! - 2)2 + 4 - 4k2 

4 + W2(a  + 2 ) / p  - k2(a + 6) sn2 
2 dn sn2 - ( 2 / p )  

p = 2 +  (4+ a)k2 - J k 4 ( a  + 4)2 + 4  - 4k2 
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and lead, for H+, to more complicated potentials than (7). 
The authors of [ 151 considered the sphaleron solutions available in the sineGordon 

model and in thedoublewell potential considered in 1+1 dimensions with periodic boundary 
condition of the space variable. They pointed out that the normal-mode equation about the 
sphaleron reduces to Lam6 equation (19) with N = 1 and N = 2, respectively. They 
also focused their attention on the supersymmetric partners of these equations, obtaining, 
for the superpotentials, expressions which are particular cases of our equations (50) and 
(51). Owving to the role of system (33), we attempted to ConstIuct the analogue of the 
superpotential for systems of coupled Schriidinger equations. 

Consider a generic 2 x 2-matrix Schrodinger operator - & + V ( x )  and let + = (fo, go) 
denote its ground state (assuming that the ground-state energy is zero). Then, define the 
vectors 

which are normalized and orthogonal at any space point x ,  so that a scalar function a(x) 
exists such that 

(53) 
d -  d 

-@ = a ( x ) i  dr dx 
-i = -a(x)$. 

It appears that the superpotential W ( x ) ,  such that V = W’+ Wz, can be written in the form 

(using Dirac notation) provided that function b(x) obeys the Ricatti equation 

(55) 

This equation specifies how to constuct, in principle, the supersymmetric partner of the 2 x 2 
matrix potential V(x). Unfortunately, we failed to obtain explicit solutions for b(x) when 
the ground state (fo, go) is given by equation (36) or (37). 

db - + bZ = ( i lVl , f )  - 3a2. 
dx 

6. Conclusions 

We have reconsidered the Heun equation from the point of view of the notion of quasi- 
exact solvability. In view of possible applications. we have put the Heun equation in several 
different, but equivalent, forms. 

We believe that suitable ansatzes for the eigenfunction can be performed that transform 
Heun equations into Qes systems. This procedure makes the notion of quasi-exact solvability 
more flexible and enlarges the set of ‘algebraically’ accessible solutions. Although we 
succeeded with this programme for particular values of the parameters, we hope that the 
technique could be adapted for more general cases. 

System (35) has many of the properties of Heun equations; namely, it possesses a 
multiple algebraization. The question therefore arises whether we can classify the systems 
of two (or more) Heun-like equations and their algebraic solutions. This is an interesting 
mathematical problem; moreover, it would be profitable to be able to treat such systems 
systematically in view of some other physical applications, e.g. those issued from low- 
dimensional field theories and treated as a testing ground for more realistic applications. 
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Appendix A 

In this appendix, we give the solutions of equation (3) for 6 = y = 0, 6 of the form (18) 
and n = 0 and n = I .  Higher values of n need to factorize polynomials of degree higher 
than two. 

A.I. Solutions for n=O 

S = O  

S=2-O1 

6 = 2 - a  

6 = 2 + 2 a  

6 = 6 + 3 0 1  

6 = 6 - 2 a  

6 = 6 + 3 a  

6 = 12+4a 

F =  1 

F = sn 

F =en  

F = dnl+= 

F = cn dniin 

F = cnsn 

F = sndnl* 

F = sncn dnICEL 

A = O  

A = 1 + k2(1 -a) 

A =  1 

A = k Z ( l  + 01)  

A = 1 + k2(1 + 01) 

A = 4 +  kZ( l  - 0 1 )  

A = 1 + k 2 ( 4  + 201) 

A = 4 + k2(4 + 201) 

A.2. Solutions for  n=l 

2 2  6=6-20( F = s n  -- 
A* (4 

A+ = 2+ (2-01)k’ rt Jk4(u - 2)2 -4k’ + 4  

k 2 ( a -  1 ) + A i  - 1 
6=12-301 

A+ = 5 + (5 - %)k’ rt 4 k 4 ( u  - 4)2 + 4 k 2 ( a  - 7 )  + 16 
F=cn sn -- 6 = 12 - 3a ( ’ A i y l )  

A+ = 2 +  (5 + 201)k’ 2r Jk4(m + 4)’ - 4k2 + 4 

A i  = 5 + (5 + 201)k’ k Jk4(ly +4)2 + 4kZ(01 + 1) + 16 

k’(a - 1) + A *  - 4  (f) 6=4(5-a)  F = c n s n  

Ai = IO+ (5 - 2a)k’ zk 4 k 4 ( a  - 4)z  - 34kz + 36)  
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X2(or+2) -A.++ 1 
(s) 6 = 5(4 + (U) F = cndn'* (snZ+ 

A.* = 5 + ( 1 0 + 3 ( ~ ) k ~ r t J k ~ ( ~ + 6 ) ~ - 4 k ~ ( 9 + o r ) + 1 6  

wya+ 2) + 4 - A.* 
6=6(5+or) F=sncndn'"(sn'+ 

A* = 10 + (10 + 3a)k2 rt Jk4(a + 6)* - 36k2 + 36 
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